2 Banach space properties forcing a reflexive , amenable Banach algebra to be trivial

نویسنده

  • Volker Runde
چکیده

It is an open problem whether an infinite-dimensional amenable Banach algebra exists whose underlying Banach space is reflexive. We give sufficient conditions for a reflexive, amenable Banach algebra to be finite-dimensional (and thus a finite direct sum of full matrix algebras). If A is a reflexive, amenable Banach algebra such that for each maximal left ideal L of A (i) the quotient A/L has the approximation property and (ii) the canonical map from A⊗̌L to (A/L)⊗̌L is open, then A is finite-dimensional. As an application, we show that, if A is an amenable Banach algebra whose underlying Banach space is an L-space with p ∈ (1,∞) such that for each maximal left ideal L the quotient A/L has the approximation property, then A is finite-dimensional. 2000 Mathematics Subject Classification: 46B10, 46B20, 46H20 (primary), 46H25, 46M18.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely continuous Banach algebras

 For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto  fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...

متن کامل

Completely Continuous Banach Algebras

For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...

متن کامل

Ideal Amenability of Banach Algebras and Some Hereditary Properties

Let A be a Banach algebra. A is called ideally amenable if for every closed ideal I of A, the first cohomology group of A with coefficients in I* is trivial. We investigate the closed ideals I for which H1 (A,I* )={0}, whenever A is weakly amenable or a biflat Banach algebra. Also we give some hereditary properties of ideal amenability.

متن کامل

The structure of a subclass of amenable banach algebras

We give sufficient conditions that allow contractible (resp., reflexive amenable) Banach algebras to be finite-dimensional and semisimple algebras. Moreover, we show that any contractible (resp., reflexive amenable) Banach algebra in which every maximal left ideal has a Banach space complement is indeed a direct sum of finitely many full matrix algebras. Finally, we characterize Hermitian ∗-alg...

متن کامل

Homomorphism Weak amenability of certain Banach algebras

In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002